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Abstract: Traffic control optimization is a challenging task for various traffic centres in the world and majority of approaches 
focus only on applying adaptive methods under normal (recurrent) traffic conditions. But optimizing the control plans when 
severe incidents occur still remains a hard topic to address, especially if a high number of lanes or entire intersections are 
affected.  This paper aims at tackling this problem and presents a novel methodology for optimizing the traffic signal timings 
in signalized urban intersections, under non-recurrent traffic incidents. The approach relies on deploying genetic algorithms 
(GA) by considering the phase durations as decision variables and the objective function to minimize as the total travel time 
in the network. Firstly, we develop the GA algorithm on a signalized testbed network under recurrent traffic conditions, with 
the purpose of fine-tuning the algorithm for crossover, mutation, fitness calculation, and obtain the optimal phase durations. 
Secondly, we apply the optimal signal timings previously found under severe incidents affecting the traffic flow in the 
network but without any further optimization. Lastly, we further apply the GA optimization under incident conditions and 
show that our approach improved the total travel time by almost 40.76%. 
 
 

 

1. Introduction 

Traffic incident management plays an important role 

for all transportation agencies because of its impact on safety 

and traffic control operations. To deal with stochastic 

incidents, various traffic management centres (TMCs) 

develop policies and response plan strategies in order to 

minimize the clearance time. Traffic information and control 

systems (TIMs) are key components in securing an instant 

response time since they are centralized and can easily alert 

the incident to TMCs. The typical response plan applied by 

many TMCs in case of an emergency/accident is to activate a 

range of variable message signs, close lanes and force 

turnings, without having an adaptive control method for 

signal groups in the affected intersections; most of the time 

this is a manual process which requires waiting for the 

incident to be cleared-off until the adaptive control plans are 

re-activated.  

Traffic congestion is classified into two types: 

recurrent congestion (RC) which can appear due to daily 

travel patterns and non-recurrent congestion (NRC) which 

can be caused by unexpected events such as 

accidents/breakdowns/etc. [1-3].  The most problematic 

incidents can occur at random locations, at various moments 

in time and do not ever repeat themselves [1]. It is a big 

challenge to model and handle the network optimization 

under these non-recurrent incidents because of its uncertainty 

of occurrence in both time and space. To the best of our 

knowledge, there are not many works which focus on traffic 

signal control optimization under severe incident conditions 

due to the high variability of traffic conditions and incident 

incertitude.  

This research tries to address this problem and focuses 

on modelling a new traffic management solution to ease the 

impact of non-recurrent traffic incidents, by making use of 

the power of Genetic Algorithm (GAs) and a new green split 

definition. In this paper, we present an efficient GA which 

can be applied as a tool for a fast traffic incident response and 

optimization of the traffic signal control plan. Section 2 

presents the current literature review for traffic incident 

response and signal control modelling, Section 3 focuses on 

the methodology of our work while Section 4 presents the 

optimization process and algorithm definition. In section 5 

and 6, a case study and its results are discussed. In section 7, 

conclusions are drawn according to the case study. Overall, 

the main contributions of this paper are the following: 

1. Propose a new traffic signal control optimization method 

using GAs with the purpose of minimizing the total travel 

time in urban networks affected by incidents; 

2. Employ the phase green splits in our optimisation 

problem to be decision variables while the traditional 

methods use the link green split;’ 

3. Couple the GA fitness function together with a 

simulation framework consisting of a static assignment 

followed by a microscopic stochastic route choice 

simulation in Aimsun.  

4. Showcase the dramatic travel time reduction before and 

after deploying the GA for signal optimisation of an 

affected road network.  

2. Literature review 

2.1 Traffic incident response related work 
Current research on traffic incident response is 

majorly focused on incident response planning and decision 

making. Ban, et al. [4] recently developed a decision-making 

tool to determine whether or not to activate the control system 

when an incident is reported to the traffic management centre 
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by using regression models and support vector machines to 

quantify the performance of traffic signals in the network. In 

the official traffic incident management handbook for U.S.A 

[5], two major tasks are suggested for traffic control such as: 

actively managing the traffic control devices in the incident 

affected area and designating alternative routes, but no further 

details about how to adjust the traffic control are discussed. 

These manual techniques highly rely on the practical 

experience of the operators. Therefore, developing an 

automatic control process in traffic modelling could improve 

the current traffic management and provide better traffic 

control suggestions to the operators. 

Mehran [6] summarized several TIMs deployments in 

Asia, Europe, and North America in which the major 

response to motorists and drivers in case of an accident is to 

provide information on the current traffic condition, route 

information and travel time. But the need to minimize the 

impact of incidents on road traffic is barely focused and 

investigated.  Nitsche, et al. [7] evaluated novel technologies 

in TIM under different incident scenarios by assessing the 

discovery time, verification time and initial response time 

when using a cell transmission model (CTM-v) as a 

simulation model. Recently, a research about coordinating 

TIM and Congestion Management (CM) was facilitated by 

the University of Washington [8] in order to identify the 

current “as-is” TIM and CM processes, and exploring the 

desired interventions (“to-be” models); the coordination of 

TIM and CM was on demand and was regarded as a future 

exercise in the U.S.A.   

In Australia, practices in traffic incident response have 

been mostly focused on procedures for incident detection, 

verification, response plan, site management, investigation, 

clearance, traffic management and traveller information [9]. 

In this recent report, the microscopic simulation was 

mentioned as a planning, operation and training tool for 

helping the TIM systems, but no further detail for any existing 

and operating microscopic simulation investigation was 

provided. The report is majorly focused on regulating and 

refining the traffic response plan for multiple agencies such 

as Emergency Medical Services (EMS), police and fire 

stations, but does not provide deep knowledge about the 

traffic control system. Therefore, there is a true need to 

improve the current TIM system for handling incidents and 

adapt automatically the traffic control plans under severe 

accident condition.  

After all, most TIM systems are majorly focused on 

handling the traffic incident site but barely extended to 

minimize the impact on the surrounding traffic. To the best of 

our knowledge, no traffic modelling has been intensively 

studied and applied to traffic incidents and incident clearance 

time reduction. On the long-term, this work contributes to our 

ongoing objective to build a real-time platform for predicting 

traffic congestion in Sydney, and to analyse the incident 

impact during peak hours (see our previous works published 

in [10]-[11]).  

 

2.2 Traffic signal control modelling 
Current traffic signal control models are refined to 

deal with mostly recurrent congestions in the network, but 

they are not so sensitive to the congestion caused by non-

recurrent traffic incidents. Severe traffic incidents may 

strongly influence the traffic signal control and should not be 

neglected. A well-concluded review published in [12] 

presented the traffic control modelling for both arterial roads 

and motorway. In this review, a “store-and-forward model” 

is introduced to simplify the model-based optimization 

method by enabling the mathematical description of the 

traffic flow process without discrete variables; as well it uses 

the Traffic-response Urban Control (TUC)  strategy for 

calculating the real-time network splits [13]. Ritchie [14] 

introduced multiple real-time knowledge-based expert 

systems (KBES) to the advanced traffic management (ATM) 

system in order to provide suggestions to the control room 

staff when non-recurrent congestion happened. At that time, 

the cooperation of artificial intelligence (AI) and ATM were 

very pioneering and the combination of AI and ATM became 

a good direction for later research. This conceptual design can 

be fulfilled now by recent machine learning techniques and 

big-data processing.  

Among various models, GA is popular for its 

efficiency of optimizing traffic signal controls which was first 

introduced by Goldberg and Holland [15] in 1988 later 

applied to traffic signal timing optimization in 1992 in [16]. 

In 2004, Ceylan and Bell [17] applied stochastic user 

equilibrium to model the driver’s route choice under different 

signal timings while using GA to optimize the traffic signal 

timing. It was also concluded that GA is simpler and more 

efficient than previous heuristic algorithms. GA has been 

successfully used as well for a multi-objective control plan 

optimization method for choosing the most effective traffic 

control plan in  [18], but none of the studies applied GA to 

ease accident affecting the traffic congestion. 

Overall, there is still a gap in researching the most 

efficient and fast response in traffic signal control modelling 

in order to deal with non-recurrent traffic incidents. Our 

approach and methodology try to address these problems by 

deploying an innovative GA modelling while also optimizes 

the green time splits in intersections affected by incidents, 

obtaining the minimal travel time. The procedure and 

description of all the steps are provided in Section 3. 

3. Methodology 

3.1 Problem formulation 
There are four different steps for creating a traffic 

incident response: incident identification, verification, 

response, and clearance. This paper is basically focused on 

the modelling of traffic management and control after an 

incident has been confirmed and reported by TMC. The 

proposed model is going to be applied in the response phase 

and clearance phase. To simplify the case study, this paper 

assumes that the incident was previously detected and 

verified and the duration of the incident clearance was 

predicted. In addition, the severity of the incident is also 

reported as an indication of the number of lanes affected.  

Last but not least, the incident affected area is 

determined using previous studies. Recently, Pan, et al. [19] 

studied the spatial-temporal impact of traffic incidents based 

on archived data using advanced sensors and came up with 

the incident impact area and the delay occurrence prediction 

in a road network. The affected area normally contains all the 

surrounding network which experiences the congestion 

caused by the incident and it is generally time-dependent to 

the reported location of the incident. The problem we are 

trying to solve is how to optimize the traffic control plan 



26th ITS World Congress, Singapore, 21-25 October 2019 

 

3 

 

around the incident location, in order to minimize the impact 

of the incident in terms of vehicle total travel time. Therefore, 

we use the road network in the affected area which is pre-

determined, and we formulate the problem as follows: 

Given a road network which has been identified as 

affected by an accident, we define the following: 

𝐴  is the set of links in the network, 

W  is the set of origin-destination pairs of the 

network, 

𝑅𝑤  is the set of routes between origin-

destination pair w ∈ W, 

𝑑𝑎  is the queuing delay at link 𝑎 ∈ 𝐴, 

𝑓𝑟
𝑤  is the flow on route 𝑟 ∈ 𝑅𝑤, 

𝑣𝑎  is the link flow on link 𝑎 ∈ 𝐴, 
𝜆𝑎  is the “link green split” 𝜆𝑎  which is 

determined by traffic signals at the end of the link (the 

definition will be discussed in the next section), 

𝑡𝑎(𝑣𝑎, 𝜆𝑎)is the travel time on link a ∈ A described as 

a function of link flow 𝑣𝑎 and “link green split” 𝜆𝑎, 

𝑆𝑎  is the capacity of link a ∈ A, 

𝜎𝑎𝑟
𝑤   is 1 if route 𝑟 between O-D pair 𝑤 uses link 

𝑎, and 0 otherwise, 

𝐷𝑤  is the demand between O-D pair w ∈ W, 

The target is to minimize the total travel time of the 

network. The target objective function is as follow: 

            minimize ∑ ∫ ta(va, λa)dx
va

0a∈A

                         (1) 

Subject to 

∑ ∑ 𝑓𝑟
𝑤

𝑟∈𝑅𝑤𝑤∈𝑊

𝜎𝑎𝑟
𝑤 = 𝑣𝑎, a ∈ A                 (2) 

 

∑ 𝑓𝑟
𝑤

𝑟∈𝑅𝑤

= 𝐷𝑤 , 𝑤 ∈ 𝑊                           (3) 

𝑣𝑎 ≤ 𝜆𝑎𝑆𝑎, a ∈ A                                (4) 

𝑓𝑟
𝑤 ≥ 0, 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊                      (5) 

 

Equation (2) represents the relation between route 

flows (𝑓𝑟
𝑤) and link flows (𝑣𝑎). Equation (3) shows the flow 

conservation between route flows and O-D demands. 

Equation (4) shows that link flow is limited by the exit 

capacity, which depends on the link capacity and link green 

split. Equation (5) indicates that link flows must be no less 

than zero.  

 

3.2 The definition of link green split 𝝀𝒂 
In this paper, the definition of “link green split” (𝜆𝑎) 

is the same as the one in the study of  Yang and Yagar [20], 

which is the amount of green time granted for a link (link 𝑎) 

in a signalized intersection. As for Smith and Van Vuren [21], 

green time is divided into: stage green time (or phase green 

time) and link green time. A phase is defined as a maximal 

set of compatible approaches in an intersection. Therefore, 

the stage green time (or phase green time) is the green time 

of certain stage (or phase) in a cycle in a signalized 

intersection. The link green time is the green time granted for 

a link by all the corresponding phases in a cycle of a 

signalized intersection. 

Let Λ𝑗𝑘 be the proportion of green time for which the 

𝑘 th phase at junction 𝑗, therefore we can call Λ𝑗𝑘  a “phase 

green split”. The allocation of green time to all phases at a 

junction determines the green time of each link entering that 

junction, therefore for each link 𝑎, the “link green split” (𝜆𝑎) 

is the summation of all those phase green splits (Λ𝑗𝑘 ) for 

which phase 𝑘 at junction 𝑗 contain the movement of link 𝑎, 

or: 

𝜆𝑎 = ∑  𝛬𝑗𝑘
𝑠𝑡𝑎𝑔𝑒𝑠 𝑆𝑗𝑘 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑙𝑖𝑛𝑘 𝑎

.                 (6) 

To be clear, for each junction 𝑗, the sum (over k) of 

“phase green split” Λ𝑗𝑘 will be 1: 

∑  Λ𝑗𝑘
𝑘

= 1.                                            (7) 

Actually, by defining the Equation (7), we assume that 

there is no cycle loss time in each cycle of an intersection. In 

addition, we assume that the amber (yellow) time for each 

phase is considered as the green time. In conclusion, the 𝜆𝑎 

in this paper is the “link green split” other than the “phase 

green split”. 

 

3.3 Assumptions 
In this paper, we assume that the O-D demands are 

predefined and fixed. We use a traffic assignment model to 

get the link traffic flows which depend on link cost functions 

and O-D demands. Therefore, we can get deterministic link 

flows. In addition, the link travel time function (or cost 

function) is fixed for all links in the investigated road network 

which only depends on the link flow and the “link green split”. 

Therefore, the only parameter we try to optimize for each link 

is the “link green split” 𝜆𝑎.  

For traffic signals in the network, we assume that each 

phase of a cycle grants green to fixed movements. The order 

of phases in a cycle is also fixed. Only the duration of each 

phase is tuneable. The duration of all phases in all signalized 

intersections are actually the decision variables for the 

optimization problem. 

4. Optimization process 

The introduction in “link green split” to our problem 

leads to an optimization problem for traffic signal timing 

because of the direct relationship between “link green split” 

and “phase green split” in Equation (6) and (7). Now the 

optimization problem can be transformed into the 

optimization of the traffic signal timing in a road network. 

 

4.1 Data input 
The specification of the network is required as an input, 

which consists of: 

 O-D configuration: contains the location of origins 

and destinations, 

 O-D demand table: contains the trips between each 

pair of origin and destinations, 

 Network configuration: contains all information 

about links, nodes, speed limits, road capacity, etc.   

 Link detail table: contains link free-flow travel time, 

link speed limit, link capacity, and number of lanes, 

 Traffic signal configuration: signalized node 

indexes, number of phases, cycle time, signal 

timings, phase green splits, and the links granted 

green for each phase. 

 

4.2 Genetic algorithm specification 



26th ITS World Congress, Singapore, 21-25 October 2019 

 

4 

 

Ideally, we could sample all the possible traffic signal 

control plans in order to get the optimal traffic signal control 

plan. As we can see, it is very computationally intensive to 

sample all possible traffic signal control plans. Let’s consider, 

for example, one signalized intersection which has 4 phases. 

Each phase has a duration ranging between minimum 3 and 

maximum 90 seconds, which must be an integer. This means 

a total of (90 − 3 + 1)4 = 59,969,536  possible traffic 

control plans. The computational times to test all of the phase 

combinations to find the optimal solution can be quite 

intensive just for one intersection, not to mention more 

complicated road networks with various nodes and 

complicated connections. Therefore, a GA solution is used to 

reduce the computational load; the algorithm randomly 

samples from the total feasibility space of phase 

combinations and chooses the most representative ones which 

would minimize the total travel time in the urban network, 

under recurrent and non-recurrent traffic conditions.  The full 

description and application are provided in the next section.    

In our study, we employ a standard GA for traffic 

signal control optimization which we adapt to our network 

needs and reported traffic incident. In the following, we detail 

the parameters and steps we have followed to successfully 

deploy such model for traffic control plan optimization.  

 Fitness function: To adapt our problem to GA, the target 

function in Equation (1) is utilized as the fitness function. 

As we want to minimize Equation (1) then we want to 

use the reverse of Equation (1) as our fitness because we 

maximize the fitness value in GA. Then the fitness value 

is shown in Equation (8). 

             𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = − ∑ ∫ 𝑡𝑎(𝑣𝑎, 𝜆𝑎)𝑑𝑥
𝑣𝑎

0𝑎∈𝐴

               (8) 

 

 The decision variable: The decision variable is a vector 

of all phase durations within the network. In order to 

optimize the target function (Equation (1)), we need to 

code the decision variables as the chromosome in GA. 

The coding process is illustrated as follows: 

 

Decision variables 𝜓 (array of arrays) = 

 [ [𝑝11, 𝑝12, 𝑝13, 𝑝14] , [𝑝21, 𝑝22, 𝑝23, 𝑝24] ,    
…  , [𝑝𝑛1, 𝑝𝑛2, 𝑝𝑛3, 𝑝𝑛4]]                

 

Chromosome (array) = 
[  𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝21, 𝑝22, 𝑝23, 𝑝24,

…    , 𝑝𝑛1, 𝑝𝑛2, 𝑝𝑛3, 𝑝𝑛4] 
 

Where 𝑝𝑢𝑣  means the phase duration of intersection 𝑢 

phase 𝑣  and 𝑛  is the total number of signalized 

intersections. As we can see, the chromosome in GA is 

the same as the decision variable with less groupings. 

 The GA solution for traffic signal optimization: is 

shown in Fig. 1 and contains various modules such as 

“check stop”, “tournament”, “crossover” and “mutation” 

which are also adapted to our application.  

 

 
Fig. 1.  GA optimization process 

 

A detailed description of these modules is the 

following: 

1. Prepare input data: Within GA there are several 

parameters that need to be determined in order to get a 

fast convergence and a short computation time. We first 

use the current traffic condition and traffic signal timing 

but also fix the population size, maximum number of 

generations, probability of crossover, and probability of 

mutation.  

2. Initialization: initialize the GA population with random 

chromosomes of the dataset. 

3. Fitness function calculation: for each individual we 

calculate the fitness function by decoding the 

chromosomes to phase durations, updating the traffic 

signal timing according to the chromosome and running 

a simulation model of the network for static user 

equilibrium. We used the AIMSUN as our simulation 

tool to generate the fitness function. Within this function, 

we called AIMSUN to firstly assign the pre-set OD 

demand to the network and then run a microscopic 

stochastic route choice model to get the total travel time. 

At last, we use the reverse of the total travel time as the 

fitness value. 

4. “Reach the maximum number of iterations?”: this 

module checks first if the maximum number of 

generations has been reached; if not, proceed to the 

following steps.  

5. “Tournament”: This module is used in order to obtain 

two parents from the last generation as a preparation for 

the next generation. In this module, we randomly select 

two chromosomes from the population, followed by a 

tournament between these two chromosomes and 

comparing their fitness function values. Higher valued 
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chromosome won this tournament. At last, return the 

winner as one of the parents. 

6. “Crossover”: Two chromosomes are selected using the 

“tournament” module, and the crossover happens under 

a pre-set probability (called probability of crossover. For 

each child, an inherent index 𝑥𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 is randomly 

selected as a float which is in the range of (0,1). Then 

the child’s chromosome is calculated as in Equation (9). 

𝐶ℎ𝑖𝑙𝑑 = 𝐹𝑎𝑡ℎ𝑒𝑟 ∗ 𝑥𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 + 

𝑀𝑜𝑡ℎ𝑒𝑟 ∗ (1 − 𝑥𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡)             (9) 

7. “Mutation”: Mutation changes the chromosome in 

children in a pre-set probability (called probability of 

mutation). In this application, mutation function only 

mutates between phases within one intersection. The 

reason is to maintain the cycle time in each intersection. 

For example, one child has a chromosome of: 
[𝑝11, 𝑝12, 𝑝13, 𝑝14,

𝑝21, 𝑝22, 𝑝23, 𝑝24, … , 𝑝𝑛1, 𝑝𝑛2, 𝑝𝑛3, 𝑝𝑛4]. 
We then randomly select: a) an intersection  𝑢  b) two 

phases 𝑣 and 𝑤 from this interection and c) the variation 

(𝑉𝑎𝑟 ) within the range of (0,  𝑝𝑢𝑣 ). At last, the new 

duration of phases 𝑣  and 𝑤  are calculated as: 𝑝′𝑢𝑣 =
𝑝𝑢𝑣 − 𝑉𝑎𝑟 ,  𝑝′𝑢𝑤 = 𝑝𝑢𝑤 + 𝑉𝑎𝑟 . The rest phase 

durations of this child remain the same. 

8. “GA optimization”: continue to the next generation by 

going to step 2 until the stopping criteria has been 

reached. 

 

Table 1 Configuration of traffic signals for each intersection 

Phase ID Traffic signal configuration (green movements highlighted) 

1 

 

2 

 
 

3 

 

4 

 

Table 2 Traffic demand 
From\To 1 2 3 4 5 6 7 8 Total 

1 0 150 150 150 150 100 100 150 950 

2 150 0 100 100 100 150 150 100 850 

3 150 100 0 150 100 100 100 150 850 

4 100 150 100 0 150 100 150 150 900 

5 150 100 100 150 0 150 150 100 900 

6 100 100 100 100 0 0 150 100 650 

7 100 150 750 150 150 100 0 150 1550 

8 100 150 150 100 150 100 100 0 850 

Total 850 900 1450 900 800 800 900 900 7500 

5. Case study 

For showcasing the benefits of the proposed approach, 

a four-intersection network was designed in AIMSUN [22] 

and three scenarios are constructed in order to optimize the 

traffic signal timings under normal conditions and under 

traffic incident conditions. The GA model is tuned by running 

multiple times using different parameter settings before 

converging towards the optimal GA parameters to be used in 

the case study.  

5.1 Network configuration 
This network layout of the simulation model is shown 

in Fig. 2 (a) and is a left-hand drive model to accommodate 

the Australian road environment. The simulation duration is 

one hour and each intersection is a typical four-branch 

signalized intersection with dedicated right turning lane and 

dedicated left turn lane. The detailed layout of intersection #1 

is shown in see Fig. 2 (b) as an example, and all the other 

intersections are configured in the same way. 
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This is an initial traffic network configuration for 

which we apply the proposed GA optimization. Further 

extension of this work will apply the methodology to a 

Sydney sub-network. 

 

5.2 The configuration of traffic signals 
Each intersection has the same cycle time (which is set 

to 90 seconds) and the same number of phases (which is 4). 

The order of phases is fixed. Within each phase, the green 

granted movements are the same and fixed for all 

intersections. The only variable in signal configuration is the 

phase green times. The configuration of traffic signals for 

each intersection is shown in Table 1. 

 

5.3 Traffic demand 
The O-D indexes are shown in Fig. 3 and the O-D trips 

for one-hour simulation are shown in Table 2. As highlighted 

in Table 2, a higher flow is set from centroid 7 to centroid 3. 

This O-D pair contains 2 routes, which are shown in Fig. 3 

(Route 1 and Route 2). Special attention will be paid in 

observing and analysing the flows on these two routes under 

optimization constraint. 

 

 

  
a 

 

 
b 

Fig. 2.  (a) Network layout, (b) Intersection #1 layout 

5.4 GA parameter tuning 
Before applying the GA optimization method, there 

are several parameters that need to be set up which are: the 

population size, the maximum number of generations, the 

crossover probability, and the mutation probability, which 

have been tuned with the computational time in mind as well.  

 

 
Fig. 3.  O-D index definition and major routes highlighted 

The details of these parameters are as follow: 

 Population size and maximum number of generations: 

Population size is the number of individuals 

(chromosomes) in one population in one generation. 

Maximum number of generations is the maximum 

number of evolutional generations in one optimization. 

The max number of generations is determined by the 

performance of the fitness function and is set at the step 

after which the fitness function doesn’t improve anymore. 

In addition, population size and maximum number of 

generations have direct relationship with total 

computational time which will be discussed in bullet 

“computational time” in the following paragraph.  

 Probability of crossover: enables to inherit a good 

fitness from the last generation to new generation. This 

parameter must be very high in order to achieve fast 

convergence, so the probability of crossover is set to 0.8 

in all experiments in this paper. 

 Probability of mutation: Mutation generates new 

chromosomes which enrich the gene library. Mutation is 

a double-edged sword. On one hand, the mutation may 

happen to a chromosome with bad fitness and transform 

it into a chromosome with better fitness. On the other 

hand, mutation creates noise to the convergence of GA. 

In order to avoid noise in convergence, the mutation 

probability is set to 0.1 in all experiments of this paper. 

 Computational time: Computational times are recorded 

at the beginning and the end of a generation. The most 

time-consuming procedure is the GA algorithm is the 

calculation of fitness value for each chromosome in each 

generation. Because the computation time for each 

fitness value calculation is relatively constant using 

Aimsun and the total number of fitness value calculations 

repetition is the product of population size and maximum 

number of generations, there is a linear relationship 

between accumulative computation time and the product 
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of population size and maximum number of generations. 

Experiments show that the first 10 generations always 

consume more time than the rest of generations and after 

10 generations, each generation takes the same time.  

We tested the typical combination of GA parameters, 

then we determine a set of parameters with fast and stable 

convergence and relatively short computation time. The 

maximum number of iterations is set to 20, the population 

size is set to 75, the crossover probability is set to 0.8, and the 

mutation probability is set to be 0.1, which consumes an 

average computational time of about 7 minutes per generation. 

Currently in our GA optimization process, we use 

sequential computing when calculating fitness values. In this 

experiment, the computational time for calculating one 

fitness value is less than 7 seconds. As we know, each 

individual in GA is independent and therefore, can be 

processed in parallel. Ideally, we can use parallel computing 

to physically reduce the computational time in the future. 

Ultimately, the computation time will not be the limitation of 

our algorithm. 

  

Fig. 4.   Traffic incident configuration 

5.5 Scenarios 
Using the above GA parameters, three scenarios are 

designed for our case study which are: 

1. No traffic incident scenario but using GA for traffic 

control optimization: the proposed GA model will be 

applied to the “no-incident network” and a simulation 

applying the optimal signal control (we can call it “no-

incident optimal signal control”) to the “no-incident 

network” is recorded. 

2. Traffic incident scenario without GA traffic control 

optimization: an incident is created in the network at the 

location shown in Fig. 4 which will last for one hour. The 

incident blocks one lane of a two-lane link in route 2 

from centroid 7 to centroid 3. The traffic flows on both 

route 1 and route 2 will be affected by this incident. The 

traffic signal plan in scenario 2 is the same as scenario 1.  

3. Traffic incident scenario with the GA traffic control 

optimization: the proposed GA model will be applied to 

the network and a simulation using the new optimal 

signal control will be recorded.  

6. Results 

6.1 Scenario 1: No incident scenario with GA 
Let’s denote {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 , 𝑖 = 1, . .4} as the phases of 

each intersection, where 𝑎1 is the first phase of intersection 1, 

𝑏1 is the second phase of intersection 1, etc. The outcome of 

proposed GA model returned the following optimal phase 

values [in seconds] of the whole network under no incident 

conditions:  

 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑝ℎ𝑎𝑠𝑒 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1 = 
{18, 22, 12, 38, 20, 19, 15, 36,17, 12, 17, 44, 30, 22, 9, 29}   

 

The corresponding optimal fitness value is -22.41, 

which corresponds to a total travel time of 22.41 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∙
ℎ𝑜𝑢𝑟. 

The convergence of each phase in intersection 1 and 

intersection 3 towards the optimised solution are presented in 

Fig. 5 and 6 respectively. The convergence of each phase in 

other intersections has the same pattern as intersection 1 (see 

Annex A).  

In each sub-figure (such as (a), (b), (c) and (d)), GA 

started with a big range of phase durations with scattered 

corresponding fitness values in generation 1. Then after 

various generations of evolution, the fitness values increases 

gradually and all phases have reached convergence at the end 

of the GA process in generation 20.  

There is a significant trend for intersection 3 where the 

duration of phase 4 is getting longer as the number of 

generations increases. As shown in Table 1, phase 4 contains 

the right-turn movement of north and southbound traffic and 

left-turn movement from east and westbound traffic. The 

reason for this trend is the high demand from centroid 7 to 

centroid 3 shown in Table 2 and Fig. 3, which leads to high 

flows using route 1 and route 2 as shown in Fig. 3. The 

increasing trend in phase 4 duration in intersection 3 provides 

more green time to accommodate the traffic flows using route 

2.  

In addition, the simulated flow using the optimal 

traffic signal timings generated from GA model is presented 

in Fig. 7. The simulated flows prove that the optimal signal 

timings generated by the GA model are aware of the high 

demand and diverge the flows for two routes. The flows along 

route 1 and route 2 are around 1,200 to 1,300 vehicle/hr which 

are quite even. The reason for a evenly split between route 1 

and route 2 flows is that both route 1 and route 2 has similar 

length, capacities, and turnings in our network.  
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Fig. 5. Phase duration convergence in intersection 1 

 

 

Fig. 6. Phase duration convergence in intersection 3 
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Fig. 7. Simulated flow under optimal traffic signal settings without any incident 

 

Fig. 8. Simulated flow with the incident 
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6.2 Scenario 2: Traffic incident scenario without 
GA  

In this scenario, the same signal control plan as 

scenario 1 is used and the simulated flows are presented in 

Fig. 8. The total travel time obtained in this case is 47.37 

𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∙ ℎ𝑜𝑢𝑟, which is 111.38% more than the travel time 

experienced under no incident conditions (22.41 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∙
ℎ𝑜𝑢𝑟).  

By comparing Fig. 7 and Fig. 8, the traffic flow on 

route 1 increased while the traffic flow on route 2 decreased. 

This is reasonable because there is an incident happening 

during the simulation on route 2 where drivers try to use route 

1 instead of route 2. However, the traffic signals do not adapt 

to the shifting flows, therefore the flow in route 1 didn’t 

increase too much.  

 
6.3 Scenario 3: Traffic incident scenario with GA 

In this scenario, the outcome of the proposed GA 

model is recorded. The convergence of each phase in each 

intersection has the same pattern as in Fig. 5 and can be found 

in Annex B. The final outcome of the GA model for this 

scenario is:  

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑝ℎ𝑎𝑠𝑒 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 3 = 
{31, 22, 13, 24, 29, 23, 17, 21, 30, 21, 18, 21, 29, 38, 9, 14},  

 

and the corresponding optimal fitness value is -28.24, 

which means total travel time is 28.24 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∙ ℎ𝑜𝑢𝑟 which 

is 26.02% more than the travel time experienced under no 

incident condition in scenario 1 (22.41 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∙ ℎ𝑜𝑢𝑟) but 

40.76% lower than scenario 2 (47.37 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∙ ℎ𝑜𝑢𝑟). This 

means the GA model is capable of reducing the total travel 

time under non-recurrent incidents.  

By comparing the phase durations between scenario 1 

and 3, not all phases containing movements in route 2 are 

increased. For example, 4th phase in intersection 1 and 4th 

phase in intersection 4. On the contract, the other phases 

containing movements which are not affected by the incidents 

are given more green times more or less.   Therefore, we can 

infer that one important source of total travel time saving 

comes from the sections that are not affected by the incident.  

In addition, the simulated flow using the optimal 

traffic signal timings generated from GA model is presented 

in Fig. 9. The flow on the incident located section dropped 

comparing to Fig. 7. On the other hand, by comparing Fig. 8 

and Fig. 9, the allocation of trips alone route 1 and route 2 are 

almost the same, which means that the GA optimized signals 

are adapted to the traffic flow. 

 

 

Fig. 9. Simulated flow under incident with GA optimized signal control 

6.4 Findings 
In scenario 1, we simulated the daily normal traffic 

under normal traffic control plan. The GA model was applied 

to get the optimal traffic control plan. Then in scenario 2, a 

traffic incident was created in the network, and no more 

action was taken to response the traffic incident. The total 

travel time in scenario 2 increased by 111.38% compared to 

the total travel time in scenario 1. At last, we simulated the 

case that we took the instant response to the traffic incident 

and apply the GA model to re-estimate the optimal traffic 

control plan. The total travel time in scenario 3 only increased 

by 26.02% compared to the total travel time in scenario 1.  

By comparing the outputs of scenario 2 and scenario 

3, we conclude that the proposed GA model is able to adjust 

the signal timings to minimize the total travel time. In our 

case study, 40.76% of total travel time saving is achieved in 

our network. 
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7. Conclusion 

In this paper, a GA method is developed to mitigate 

the impact of non-recurrent traffic incidents. A four-

intersection network is designed as the experiment base 

model in AIMSUN. The proposed GA model is transformed 

from a standard GA model by adapting the key components 

to traffic signal timing optimization. These components 

consist of initialization, fitness function calculation, 

crossover, mutation and so on. A proper set of GA parameters 

are chosen according to the prior experiments in order to 

achieve fast and stable convergence and short computational 

time. At last, the experiment is designed to simulate the cases 

whether TMC takes action to revise traffic control plans after 

the appearance of an incident or not. The experiment results 

show improvement of total travel time if the TMC uses the 

proposed GA model to re-optimize the traffic control plan 

under the incident condition comparing to taking no action at 

all. The saving in total travel time is 40.76%.  

Future work can be done in investigation more 

complicated network and even real-world network. In order 

to fit the proposed model to real-world application, work can 

be done in parallel computing to further shorten the 

computation time and further increase the efficiency. In 

addition, apply reinforcement learning to further speed up the 

convergence speed in GA is also a good perspective.  
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11. Annex A 

Scenario 2: Traffic incident scenario without GA  

 

Fig. 10. Phase duration convergence in intersection 2 

 

 

 

Fig. 11. Phase duration convergence in intersection 4 
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12. Annex B 

Scenario 3: Traffic incident scenario with GA 

 

Fig. 12. Phase duration convergence in intersection 1 

  

Fig. 13. Phase duration convergence in intersection 2 
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Fig. 14. Phase duration convergence in intersection 3 

 

Fig. 15. Phase duration convergence in intersection 4 

 


